Return to home page |
III) Excitation out of Metastable Levels of AtomsA. MotivationMetastable states are long lived states that are dipole-forbidden from decaying to the ground state. In comparison to ground state atoms, metastable atoms are big and fluffy (i.e. they have much larger cross sections), they also have a lot of internal energy. Since they are long lived, substantial populations of metastable atoms can form in many plasmas. Because of these properties, excitation into and out of metastable levels play a key step for many processes in plasmas, lighting discharges, atmospheric dynamics, etc... Sources of Metastable AtomsWe have done experiments using two different sources of metastable atoms.
Hollow Cathode SourceIn this experimental setup a thermal beam of ground state and metastable atoms (purple) emerge from the bottom of the hollow cathode discharge. The atom beam is crossed with an electron beam (blue). The fluoresence is detected by a PMT, with wavelength selection provided by a narrow-band interference filter. To place the results on an absolute scale we use a Laser-Induced Fluoresence technique. The electron-beam excitation is replaced with excitation from a laser. The ratio of the two signals and the known optical absorbtion cross section, it is possible to determine the electron-impact excitation cross section. Explaination of Charge ExchangeTo get around the problem of excitation out of the ground state, it would be nice to have a target composed only (or at least mostly) of metastable atoms. One way of achieving this goal is through near resonant charge exchange.The ground state binding energy of sodium (or any of the alkali metals) is almost the same as the binding energy of the He(21S) and He(23S) levels. Thus, in a collision between a helium ion and an alkali atom, there is large cross section for charge exchange into the metastable levels (small energy defect ~0.5eV), while the cross section for charge exchange directly into the ground state is very small (large energy defect ~20eV). Nonetheless, there is some charge exchange into the He(21P) level that quickly decays to the ground state, but there are still about five metastable atoms for every one ground state atom.
Thus due to the energy near-resonance, creation of both the He(23S) & He(21S) levels are favorable, while the He(11S) level is unfavorable. Using the ratio of 21S to 23S metastable atoms can be varied from 40:60 to 100:0 depending on the He+ beam energy and the alkali target used. Fast Beam ExperimentThis charge exhange method is used in the fast beam experiment. A RF ion source produces a 1.6keV He+ beam. The ion beam is passed through a cesium vapor target to produce the metastable helium atoms. The remaining ions are deflected out of the way with a set of deflection plates in the next chamber, leaving only the neutral particles. The atom beam is then crossed at right angles with an electron beam, and the fluoresence is detected by a PMT at right angles to both beams. The number of atoms in the fast beam is monitored by a secondary electron detector in the last chamber. Due to the complications of having a fast atom beam target, the absolute calibration for this experiment is a bit more complicated. Seperate experiments are preformed to determine the efficiency of the neutral detector and optical system. Information is also required on the overlap of the atom beam, the electron beam, and the optical detection region.
references: Studies of Electron Excitation of Rare-Gas Atoms into and out of Metastable Levels using Optical and Laser Techniques Chun C. Lin, and L. W. Anderson, Adv. At. Mol. Opt. Phys. 29 (1991) 1-32. Cross sections for electron excitation of the 23S metastable level of He into higher triplet levels Garrett A. Piech, Mark E. Lagus, L. W. Anderson, Chun C. Lin, and M. R. Flannery, Physical Review A 55 (1997) 2842-2856. A method for measuring cross sections for electron-impact excitation out of metastable levels of atoms Ronald B. Lockwood, L. W. Anderson, and Chun C. Lin, Z. Phys. D- Atoms, Molecules and Clusters 24 (1992) 155-160. Apparatus for measuring electron-impact excitation cross sections using fast metastable atoms produced via charge exchange John B. Boffard, Mark E. Lagus, L. W. Anderson, and Chun C. Lin, Rev. Sci. Instrum. 67 (1996) 2738-2751. | |||||||
last updated: May-18-1997 |